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In a previous publication, the Gumbel–Fisher–Tippett (GFT) extreme-value

analysis has been applied to investigate the statistics of the intensity of the

strongest reflection in a thin resolution shell. Here, a similar approach is applied

to study the distribution, expectation value and standard deviation of the highest

normalized structure-factor amplitude (E value). As before, acentric and centric

reflections are treated separately, a random arrangement of scattering atoms is

assumed, and E-value correlations are neglected. Under these assumptions, it is

deduced that the highest E value is GFT distributed to a good approximation.

Moreover, it is shown that the root of the expectation value of the highest

‘normalized’ intensity is not only an upper limit for the expectation value of the

highest E value but also a very good estimate. Qualitatively, this can be

attributed to the sharpness of the distribution of the highest E value. Although

the formulas were derived with various simplifying assumptions and approxi-

mations, they turn out to be useful also for real small-molecule and protein

crystal structures, for both thin and thick resolution shells. The only limitation is

that low-resolution data (below 2.5 Å) have to be excluded from the analysis.

These results have implications for the identification of outliers in experimental

diffraction data.

1. Introduction

The distributions of the intensities and structure factors of

‘typical’ reflections in the X-ray diffraction pattern of a crystal

are well known. They describe the distribution of normalized

reflection intensities or normalized structure factors (unsigned

E values) across reciprocal space (excluding some reflections

in special positions). Alternatively, they describe the distri-

butions of these values for a pre-picked reflection if the

distribution of scattering atoms in the asymmetric unit is

randomly varied. The statistics for acentric and for centric

reflections are different. For a ‘typical’ reflection, the formulas

for the E-value distributions are

faðxÞ ¼ 2x expð�x2Þ; FaðxÞ ¼ 1� expð�x2Þ; ð1Þ

fcðxÞ ¼
2

�

� �1=2

exp �
x2

2

� �
; FcðxÞ ¼ erfðx=21=2

Þ; ð2Þ

if x denotes the E value, f and F denote the non-cumulative

and cumulative distributions and subscripts ‘a’ and ‘c’ distin-

guish acentric and centric reflections.

In a previous publication (Bochtler & Chojnowski, 2007),

we have studied the intensity statistics of a very ‘atypical’

reflection, which was selected among n other unique reflec-

tions for having the strongest intensity (excluding reflections

in special positions that are systematically strong). Using

standard Gumbel–Fisher–Tippett (GFT) extreme-value

analysis, we have derived analytical formulas that relate the

expectation value � and standard deviation � of the highest

reflection intensity J in a thin shell to the number of unique

reflections n, from which it was selected. For convenience,

reflection intensities were measured in units of the average

reflection intensity in the thin resolution shell, which is

equivalent to the transition from intensities to normalized

intensities. With this convention and a separate treatment of

acentric (subscript a) and centric (subscript c) reflections, the

following formulas were obtained for the highest reflection

intensity J:

�ðJaÞ ¼ ln na þ �; �ðJaÞ ¼ �=61=2; ð3Þ

�ðJcÞ ¼ 2ðln nc þ �Þ � lnð� ln ncÞ;

�ðJcÞ ¼ 2�=61=2 � �=ð61=2 ln ncÞ: ð4Þ

In (3) and (4), � ’ 3.142 is Ludolf’s number and � ’ 0.577 is

the Euler–Mascheroni constant.

In the same work, we further showed that the highest

reflection intensity was GFT-distributed and, based on this

result, derived confidence intervals for the highest reflection

intensity J:



Pð�� 1:31� � J � �þ 1:87�Þ ¼ 90% ð5Þ

Pð�� 1:75� � J � �þ 3:68�Þ ¼ 99%: ð6Þ

In these formulas, � and � refer to the expectation value and

standard deviation of the highest reflection intensity but the

same formulas would also be applicable to any other GFT-

distributed variable. The boundaries of the confidence

intervals were chosen to make the probabilities for large

and small outliers equal. In the previous work, we limited

ourselves to thin resolution shells to avoid complications

from the systematic dependence of the average reflection

intensity on resolution. The limitation of the thin resolution

shells and the requirement for a sufficient number of

reflections in the shell forced us to consider only protein

crystals, which typically have large unit cells (Bochtler &

Chojnowski, 2007).

In this work, we follow the approach of our prior work on

the highest normalized reflection intensity to study the

statistics of the highest E value of n unique reflections. In the

Theory section of this work, we start from the well known

E-value distributions for ‘typical’ reflections and pretend that

the E values of ‘typical’ reflections are statistically indepen-

dent. With this assumption, we can apply GFT extreme-value

theory to the problem of the highest E value, demonstrate that

this value is GFT-distributed and derive separate analytical

expressions for its expectation value � and standard deviation

� in the acentric and centric cases. As the analytical results are

based on simplifying assumptions and approximations, their

merits are checked by extensive numerical tests. Technical

details of these tests are summarized in the section Materials

and methods. In the section Tests with simulated data, we show

that the analytical formulas are good predictors of the highest

E value for crystal structures with randomly distributed scat-

terers, and in the section Tests with real data, we demonstrate

that this applies also to real crystal structures if very low

resolution data are excluded from the analysis. In contrast to

our prior work on the highest normalized reflection intensity,

we do not limit ourselves to thin resolution shells, and we

perform numerical tests for small-molecule crystal structures

from the Cambridge Structural Database (CSD) in addition to

the tests for protein crystal structures from the Protein Data

Bank (PDB). In the Discussion section, we present a short-cut

to the leading order estimates in this work, and we demon-

strate that the full expressions are consistent with our prior

results on the highest normalized structure factor. Appendix A

contains detailed calculations that were omitted from the

Theory section for clarity.

Our results have implications for outlier rejection in

experimentally determined diffraction data. In principle, the

overall probability for erroneous rejections should be

constant but, in the usual procedure that treats reflections

individually, the overall probability for false rejections grows

with the number of unique reflections in the diffraction

pattern. Our formulas, which indicate a very weak depen-

dence of the highest E value on the number of unique

reflections, show that the error is small and indicate how to

correct for it if desired.

2. Theory

2.1. Notations and conventions

Throughout this work, E, P, Q stand for E values and I, J, K

for normalized intensities when these quantities are treated as

(pseudo)random variables. The corresponding lower-case

letters denote actual values, except that x is used instead of e

to avoid confusion with Euler’s number. E and I describe a

‘typical’ reflection, P and J the strongest reflection, Q and K

the strongest reflection after rescaling to expectation value 0

and standard deviation 1. F, G, H denote cumulative prob-

ability distributions and f, g, h the corresponding non-cumu-

lative distributions. The letters F and f describe the E-value

distribution of a ‘typical reflection’. G and g represent the

cumulative and non-cumulative Gumbel distribution

(Gumbel, 1958):

GðxÞ ¼ exp½� expð�xÞ� ð7Þ

gðxÞ ¼ expð�xÞ exp½� expð�xÞ�: ð8Þ

The term Gumbel distribution is reserved here for this special

form of the GFT distribution with expectation value � and

standard deviation �=61=2. H and h stand for the cumulative

and non-cumulative GFT distribution after rescaling to

expectation value 0 and standard deviation 1:

HðxÞ ¼ exp � exp �
�

61=2
x� �

� �h i
ð9Þ

hðxÞ ¼
�

61=2
exp �

�

61=2
x� �

� �
exp � exp �

�

61=2
x� �

� �h i
:

ð10Þ

Subscripts c and a distinguish centric and acentric reflections

where necessary. Throughout this work, n stands for the

number of unique reflections from which the highest E value

was selected.

2.2. Predictions

To proceed with the analytical treatment, we pretend that E

values are statistically independent non-correlated variables.

This simplifying assumption ignores the well known correla-

tions between (complex) normalized structure factors which

are the basis of direct methods (Cochran & Woolfson, 1955)

and can be justified only by the success of the formulas that are

derived from it. We note that the highest E value from

reflections is below a threshold if the E values of all reflections

are below the threshold and vice versa. With the assumption of

statistical independence of the reflections, the cumulative

distribution of the highest E value is therefore related to the

cumulative distribution of the E value of a typical reflection by

a simple power law with the number of unique reflections in

the exponent.

PrðP � xÞ ¼ ½FðxÞ�n ð11Þ

d

dx
PrðP � xÞ ¼ n½FðxÞ�n�1F 0ðxÞ ð12Þ
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�ðPÞ ¼

Z1

0

dx x
d

dx
PrðP � xÞ ¼

Z1

0

dx xn½FðxÞ�n�1F 0ðxÞ

¼

Z1

0

dx xn½FðxÞ�n�1f ðxÞ ð13Þ

�ðP2
Þ ¼

Z1

0

dx x2 d

dx
PrðP � xÞ ¼

Z1

0

dx x2n½FðxÞ�n�1F 0ðxÞ

¼

Z1

0

dx x2n½FðxÞ�n�1f ðxÞ ð14Þ

�ðPÞ ¼ ½�ðP2
Þ � �2

ðPÞ�1=2
ð15Þ

The distribution of the largest E value depends only on the

(exponential) tail of the distribution for a ‘typical’ E value.

Therefore, the cumulative distribution of the E value of a

typical reflection is conveniently written as

FðxÞ ¼ 1� exp½�uðxÞ�: ð16Þ

In this expression, it is understood that the dependence of u on

its argument x is polynomial and not exponential. As usual in

GFT extreme-value theory, approximate expressions for

equations (11) to (15) can be obtained by a Taylor expansion

of u around u�1ðln nÞ. As the cumulative distributions Fa and

Fc for acentric and centric reflections are different, the

calculations have to be carried out separately for the two

groups of reflections. The detailed calculations are presented

in Appendix A, here we present only a summary of the results.

In the acentric case, Taylor expansion of u to the first order

yields

PrðPa � xÞ ¼ Gð2½ln na�
1=2fx� ½ln na�

1=2gÞ: ð17Þ

In words, equation (17) expresses that the highest E value is

GFT distributed if the quadratic term in the expansion for u is

neglected. If the quadratic term is taken into account, a

different expression is obtained:

PrðPa � xÞ ¼ Gðx2 � ln naÞ: ð18Þ

Note that equation (18) is an improvement over equation (17)

only for some arguments. For x!�1, (18) predicts

PrðP � xÞ ! 1, which is clearly incorrect, whereas (17)

predicts PrðP � xÞ ! 0, as it should be. Therefore, analytical

expressions for �ðPaÞ and �ðPaÞ were only obtained for the

Taylor expansion up to the linear term. Detailed calculations

that are presented in Appendix A lead to

�ðPaÞ ¼ ðln naÞ
1=2 1þ

�

2 ln na

� �
ð19Þ

�ðPaÞ ¼
�

61=2

1

2ðln naÞ
1=2
: ð20Þ

In the centric case, Taylor expansion of u leads to the

following expression for the highest E value:

PrðP � xÞ ¼ Gðanc
ðx� bnc

Þ þ 1
2 ðx� bnc

Þ2Þ: ð21Þ

In this expression,

bnc
� ð2 ln ncÞ

1=2 1�
lnð� ln ncÞ

4 ln nc

� �
; anc

¼ bnc
þ

1

ð2 ln ncÞ
1=2
:

ð22Þ

As in the acentric case, the quadratic term is an improvement

only for some arguments. If only the linear term is retained,

further calculations and approximations that are presented in

Appendix A lead to

�ðPcÞ ¼ ð2 ln ncÞ
1=2 1�

lnð� ln ncÞ � 2�

4 ln nc

� �
ð23Þ

�ðPcÞ ¼
�

61=2

1

ð2 ln ncÞ
1=2

1þ
lnð� ln ncÞ � 2

4 ln nc

� �
: ð24Þ

Note that for fixed n the leading terms in (23) and (24) are a

factor 21=2 larger than the leading terms in equations (19) and

(20) which are applicable in the acentric case. The factor 21=2 is

to be compared with the factor 2 in the corresponding

expressions for the normalized intensities (Bochtler &

Chojnowski, 2007).

3. Materials and methods

3.1. Numerical methods

Utility programs were implemented in the C++ language

with extensive use of routines from the GNU scientific library

(Galassi et al., 2005) and the Clipper library (Cowtan, 2003).

Random atom positions (compatible with the symmetry of the

space group) were generated with the ‘Mersenne twister’

uniform random-number simulator of the GNU scientific

library (Matsumoto & Nishimura, 1998). Constraints on inter-

atom distances, such as bond lengths or exclusion volumes to

avoid atom overlap, were not applied. Uncorrelated random

data with a distribution according to equation (1) were

generated by taking the square root of the sum of squares of

two normally distributed variables with expectation value 0

and standard deviation 1=21=2. Uncorrelated data with a

distribution according to equation (2) were generated from a

normally distributed variable with expectation value 0 and

standard deviation 1 by taking the modulus. Numerical inte-

grations were performed by a Gauss–Kronrod 21-point

adaptive integration method. Infinite integrals were extended

to a finite boundary, which was chosen sufficiently large so that

the cut-off did not affect accuracy. Simulation errors were

either calculated according to the standard formulas for the

sample variance distribution (Eric W. Weisstein, Sample

Variance Distribution, WolframMathWorld – The Web’s Most

Extensive Mathematics Resource. http://mathworld.wolfram.

com/) or obtained by splitting the data into 10 separate bins.

All graphs were prepared with the GRACE software (http://

plasma-gate.weizmann.ac.il/Grace/).

3.2. Simulations, small unit cells

Simulations with small unit cells were run with parameters

that are typical for small-molecule structures. We placed

0.068V [A3] C atoms with B factor 10 Å2 in a unit cell of

volume V, which is equivalent to an average mass density of

Acta Cryst. (2007). A63, 297–305 Chojnowski and Bochtler � The statistics of the highest E value 299

research papers



1.35 g cm�3. Structure factors were calculated by the CCP4

program SFALL (Agarwal, 1978) and converted to E values

by the DREAR program (Blessing et al., 1998; Blessing &

Smith, 1999), which uses overlapping resolution bins for

normalization and is therefore optimal for handling diffraction

data of small-molecule crystals, which typically have far fewer

reflections than diffraction data of protein crystals.

3.3. Simulations, large unit cells

Simulations with large unit cells were run with parameters

that are typical for protein crystals. We placed 0.0281V [A3] C

atoms with B factor 0 in a unit cell of volume V, which results

in a Matthews coefficient of 3 Å3 Da�1. Structure factors were

calculated by the CCP4 program SFALL (Agarwal, 1978). A

bulk solvent correction was not applied. The conversion of

structure factors to E values was carried out with the ECALC

program (Collaborative Computational Project, Number 4,

1994), which was designed to handle diffraction data from

protein crystals.

3.4. Real crystals, small molecules

We downloaded all structures from the CSD (Allen, 2002)

(version 5.27, November 2005) that had R factor better than

0.05, were free of disorder or errors according to the anno-

tation, and had an estimated C—C bond standard deviation

below 0.005 Å. Structures that were determined by powder

diffraction were excluded from the set. Using these criteria,

35387 structures were obtained. No effort was made to

remove duplicate or highly similar structures from the set. As

temperature factors are not deposited in the CSD, we arbi-

trarily set them to 10 Å2 for all atoms.

3.5. Real crystals, protein molecules

Structures that had been solved at 1.5 Å resolution or better

were downloaded from the PDB (Berman et al., 2000) (release

date 18 April 2006). Duplicates or near duplicates (cut-off

90% identity) and nucleic acid structures were removed from

the set. We also removed all structures from the set that had

pseudo-origin peaks in the Patterson map that reached 40% or

more of the height of the origin peak (PDB identities 1dy5,

1ob6, 1xy1, 1m2d, 1vrz, 2bfi, 1w5u, 1m1n, 1hqj, 1m70, 1k6f,

1t6u, 1av2, 2f46, 1pp0, 1i88, 2a8y, 1o6v, 1p4o, 1wzb or 1.7% of

all structures in the set) and three very regular structures

(1t8z, 1jl0, 1k5c).

4. Tests with simulated data

The theory relies on several assumptions and approximations.

In a first series of tests, we assessed the merit of the

approximations with simulated crystal structures with random

atom configurations.

4.1. Distribution of the highest E value

As a first step, we focused on the distribution of the highest

E value and compared the predictions from the expansion to

the linear and quadratic terms with each other and with

simulations for 100000 random atom configurations in space

groups P1 and P�11. The simulations were run with parameters

that are typical for small-molecule structures (unit-cell volume

1300 Å3, 0.068 non-H atoms per Å3) and then separately with

parameters that are typical for protein crystal structures (unit-

cell volume 140000 Å3, 0.0281 non-H atoms per Å3). In order

to compare the shapes of the distributions independently of

the scale parameters that determine expectation value and

standard deviation, all distributions were rescaled to expec-

tation value 0 and standard deviation 1. The results for the

small and large unit cells are presented in Figs. 1(a), (b) and

1(c), (d), respectively. The conclusion is that in all cases the

GFT distribution approximates very well the real frequencies

of the highest E values. The quadratic term in the expansion of

u has only a minor effect, except perhaps for large arguments

where it slightly improves the agreement between predictions

and simulation results (Fig. 1).
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Figure 1
Distribution of the highest E value in the resolution shell 1.5 � 0.5 Å for
100 000 different configurations of scattering atoms in (a), (c) space group
P1 and (b), (d) space group P�11. The top (a), (b) and bottom (c), (d) panels
were obtained with parameters that are typical for small-molecule and
protein crystal structures, respectively. In order to compare only the
shape of the distributions, all distributions were analytically or
numerically rescaled to expectation value 0 and standard deviation 1.
The black dots show simulation results. The black line indicates the GFT
distribution h of equation (10). This non-cumulative distribution is the
appropriately rescaled derivative of the distribution of equation (17),
which results from neglecting the quadratic term in the Taylor expansion
of u. The grey line shows the prediction of equation (18), which takes the
quadratic term in the Taylor expansion of u into account. Numerical
integration was used to rescale the distribution in equation (18) to
expectation value 0 and standard deviation 1.



4.2. Expectation value and standard deviation of the highest E
value

Simulations were run in several space groups, but only the

(representative) calculations in space group P212121 are

presented here. The atom density was kept fixed and the unit-

cell size was varied. As the volume of the reciprocal unit cell is

inversely proportional to the volume of the direct-space unit

cell, a change in unit-cell size alters the number of scattering

atoms and also the number of reflections in each thin reso-

lution shell. For each unit-cell size, 10000 random atom

configurations were generated. A comparison of the simula-

tion results with the predictions reveals generally good

agreement, both for the simulation with small-molecule

parameters and for the simulation with protein parameters. In

spite of the good overall agreement, there are small systematic

deviations, which could be due either to neglected correlations

in the diffraction data or to other approximations that were

required to obtain analytically tractable expressions. To

distinguish between the two possibilities, we ran additional

simulations, in which we replaced the diffraction data that

were calculated by the Fourier transform with identically

distributed but uncorrelated random numbers (see Materials

and methods). Moreover, expressions (13) and (14) were

integrated numerically. The numerical integration results rely

only on the validity of the underlying E-value distributions for

typical reflections and on the assumption that E-value corre-

lations can be ignored. We expected that the simulation results

with uncorrelated ‘pseudo’ E values and the numerical inte-

gration results should be fully consistent, but might differ both

from the simulations with random atom configurations and

from the results of the analytical treatment. This is indeed the

case and sheds light on the causes of residual discrepancies

between the analytical formulas and the derivations.

In the simulations with small-molecule parameters, both the

expectation values and standard deviations come out slightly

lower from the simulations than from the analytical treatment.

In the case of the expectation values, the simulations with

‘pseudo’ E values and the results of numerical integration

agree almost perfectly with the analytical treatment,

suggesting that the remaining discrepancy from the simulation

with random atom conformations is either due to short-

comings of the underlying distribution for the E values of

‘typical’ reflections or to the neglected correlations in the

diffraction data. In the case of the standard deviations, the

situation is more complex because the simulations with

‘pseudo’ E values from the random number generator and

numerical integration yield results that are intermediate

between the simulation results with random atom configura-

tions and the predictions. For centric reflections, the leading

term in equation (24) predicts the standard deviation of the

highest E value better than the full expression with the

correction factor in the brackets. The reasons for this are not

clear, particularly because the analogous correction term in

Acta Cryst. (2007). A63, 297–305 Chojnowski and Bochtler � The statistics of the highest E value 301
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Figure 2
Expectation value � and standard deviation � of the highest E value P for P212121 crystal structures with random atom conformations for (a), (c) the
acentric case and (b), (d) the centric case. The top (a), (b) and bottom (c), (d) panels were obtained with parameters that are typical for small-molecule
and protein crystal structures, respectively. n is the number of unique reflections from which the highest E value was selected. Simulation results with
random atom conformations are indicated by circles. For comparison, simulation results with uncorrelated random numbers that are distributed
according to the E-value distribution for a ‘typical reflection’ [equations (1) and (2)] are indicated by open boxes. Grey lines indicate the values for � and
� that result from numerical integration according to equations (13) and (14) [with cumulative distributions F taken from equations (1) and (2)]. The
black lines present the predictions of the analytical formulas. These are equations (19) and (20) in the acentric case and equations (23) and (24) in the
centric case. The dashed lines in (b) and (d) show the predictions of equations (23) and (24) without the correction factors in brackets.



equation (23) for the expectation value of the highest centric

E value strongly improves the agreement with the simulations

(Figs. 2a and 2b).

In the simulation parameters that are typical for protein

crystals (Figs. 2c and 2d), qualitatively similar results were

obtained, but the discrepancies are generally smaller. Within

the error of our simulations, we cannot detect any discrepancy

between the predictions and simulation results for the

expectation value of the highest E value, for both acentric and

centric reflections, provided the full expression in equation

(23) including the correction term in brackets is used for the

predictions. Standard deviations come out essentially identical

from simulations with random atom configurations, with

‘pseudo’ E values and from numerical integration. The

predictions for the standard deviation from the analytical

formulas are slightly too large, but the discrepancies are

generally smaller than with small-molecule parameters. As

before, omission of the correction term in brackets in equation

(23) improves the agreement between predictions and simu-

lations (Figs. 2c and 2d).

5. Tests with real data

5.1. Expectation value and standard deviation of the highest E
value

In contrast to simulated data, which can be generated in any

desired quantity, there is typically only one structure with

exactly n unique reflections in a given resolution shell.

Therefore, it was necessary to cluster real structures into bins

with similar n. Bins for n values were chosen as a compromise

between the conflicting requirements for large bins to collect

sufficient statistics for �ðPÞ and �ðPÞ and for small bins to

keep the spread of n low. Throughout, calculated diffraction

data were used instead of experimental data. In the case of the

small-molecule structures, this was necessary because experi-

mental structure factors are not deposited in the CSD.

Temperature factors, which are also not deposited in the CSD,

were arbitrarily set to 10 Å2 for all atoms. In the case of

protein structures from the PDB, experimental diffraction

data were available in some cases but were not used, to

exclude the influence of measurement errors. The results of

this analysis are presented in Fig. 3 and show that the non-

random features of real crystal structures have no effect or

only a minor effect on the statistics of the highest E value for

the resolution shell 1.5 � 0.5 Å. In the acentric and centric

cases, the predictions for the expectation value are excellent,

but the standard deviations slightly underestimate the actual

values for real data. As predicted from our prior work on the

highest normalized intensity, predictions break down if very

low resolution data are included (Fig. 3).

5.2. Confidence interval for the highest E value

As the highest E value is to a very good approximation GFT

distributed, the results for its expectation value and standard

deviation can be rephrased in terms of confidence intervals for

the highest E value. The confidence interval can be uniquely
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Figure 3
Expectation value � and standard deviation � of the highest E value for real crystal structures from (a), (b) the CSD and (c), (d) the PDB and for (a), (c)
the acentric case and (b), (d) the centric case. Bins for n values were chosen as a compromise between the conflicting requirements for large bins to
collect sufficient statistics for �ðPÞ and �ðPÞ and for small bins to keep the spread of n low. Circles indicate results for the 1.5 � 0.5 Å shell. Black squares
are for the resolution range from 12.0 to 1.0 Å. The black lines present the predictions of the analytical formulas. These are equations (19) and (20) in
the acentric case and equations (23) and (24) in the centric case. The dashed lines in (b) and (d) show the predictions of equations (23) and (24) without
the correction factors in brackets.



defined by the additional requirement that the number of

small and large outliers should be equal. For the 90 and 99%

confidence intervals, this leads directly to equations (5) and

(6), which were derived in our previous work on normalized

intensities. A qualitative test for the 90% confidence interval is

presented in the scatter plots of Fig. 4, which show the actual

values of the highest E value and the theoretical 90 and 99%

confidence intervals. Qualitatively, the agreement seems good

but, quantitatively, there are too many low and high outliers.

Their actual number is quantified for the 99% confidence

interval for the 1.5 � 0.5 Å shell and for thinner shells

centered at the same resolution and is presented in the

quantitative outlier statistics. Except for very thin shells, we

find more outliers than the predicted 5%, probably in part

because the predictions for �ðPÞ underestimate the spread of

P for real crystal structures (Fig. 4).

6. Discussion

6.1. A leading order estimate for l(P)

The derivations which have been presented so far rely

heavily on extreme-value statistics. However, the key results,

the estimates for �ðPaÞ and �ðPcÞ in equations (19) and (23)

contain the Euler–Mascheroni constant �, which is typical for

extreme value statistics, only in the Oð1=½ln n1=2�Þ terms. This

suggested that the leading-order estimates for �ðPaÞ and�ðPcÞ

should be derivable without reference to the mathematics of

extreme-value statistics. It is plausible that the number of

reflections that are larger than the expectation value of the

highest reflection should be Oð1Þ. For simplicity, take this

quantity to be 1 and consider the consequences according to

equations (1) and (2).

na exp½��2ðPaÞ� ¼ 1; nc 1� erf
�ðPcÞ

21=2

� �� �
¼ 1: ð25Þ

The equations can be used to solve for �ðPaÞ and �ðPcÞ, in the

centric case using the expansion of the error function for large

arguments. The result is

�ðPaÞ ¼ ðln naÞ
1=2; �ðPcÞ ¼ ð2 ln ncÞ

1=2 1�
lnð� ln ncÞ

4 ln nc

þ . . .

� �
:

ð26Þ

The expressions for �ðPaÞ and for �ðPcÞ require only correc-

tions of order Oð1=½ln n�1=2Þ to match the more exact expres-

sions (19) and (23).

6.2. A better estimate for l(P)

Improved estimates of �ðPÞ can be derived from our

previous results about the statistics of the highest normalized

intensity. From J ¼ P2 and �2ðZÞ � �ðZ2Þ for any random

variable, it follows that �2ðPÞ � �ðJÞ. Therefore, we initially

expected that the expectation values for the strongest

normalized intensities, �ðJaÞ and �ðJcÞ, would merely act as

upper bounds for the squares of �ðPaÞ and �ðPcÞ, respectively.

However, from the expressions for �ðJaÞ and for �ðJcÞ in

equations (3) and (4), one readily obtains

½�ðJaÞ�
1=2
¼ ðln naÞ

1=2 1þ
�

ln na

� �1=2

¼ ðln naÞ
1=2 1þ

�

2 ln na

þ . . .

� �
ð27Þ

½�ðJcÞ�
1=2 ¼ ð2 ln ncÞ

1=2 1�
lnð� ln ncÞ � 2�

2 ln nc

� �1=2

¼ ð2 ln ncÞ
1=2 1�

lnð� ln ncÞ � 2�

4 ln nc

þ . . .

� �
: ð28Þ

These expressions match the expressions for �ðPaÞ and

�ðPcÞ, also for the terms of Oð1=½ln n�1=2Þ, which are missing

from the simpler estimates of equation (26). Qualitatively,

½�ðJaÞ�
1=2 and ½�ðJcÞ�

1=2 are excellent approximations

for �ðPaÞ and �ðPcÞ because the distributions of Pa and Pc

peak sharply around their expectation values. Quantitatively,

�ðP2Þ ¼ �2ðPÞ þ �2ðPÞ and therefore

�ðPÞ ¼
½�ðJÞ�1=2

1þ �ðPÞ
�ðPÞ

h i2
� �1=2

¼ ½�ðJÞ�1=2 1þO
1

ðln nÞ2

� �� �
: ð29Þ

6.3. Estimating r(P)

The leading-order estimates for �ðPaÞ and for �ðPcÞ can also

be derived by an alternative route, which is easier to

remember but lacks a rigorous justification. As E values are

defined here as positive quantities (unsigned E values), the

reflection with the highest E value p is also the reflection with

the highest normalized intensity j.

ja ¼ p2
a; dja ¼ 2padpa; jc ¼ p2

c; djc ¼ 2pcdpc: ð30Þ

The next step is to identify j’s and p’s with expectation values

and the differentials with standard deviations. So

ja ¼ �ðJaÞ; pa ¼ �ðPaÞ; dja ¼ �ðJaÞ; dpa ¼ �ðPaÞ; ð31Þ

ja ¼ �ðJcÞ; pc ¼ �ðPcÞ; djc ¼ �ðJcÞ; dpc ¼ �ðPcÞ: ð32Þ

Using only leading-order estimates from equations (3), (4),

(19) and (23), we readily find that

�ðPaÞ ¼
�

61=2

1

2ðln naÞ
1=2
; �ðPcÞ ¼

�

61=2

1

ð2 ln ncÞ
1=2
; ð33Þ

which agrees in leading order with the more accurate esti-

mates of equations (20) and (24).

APPENDIX A

We begin with the Taylor expansion of u near the argument

u�1ðln nÞ, where uðu�1ðxÞÞ ¼ u�1ðuðxÞÞ ¼ x,

uðxÞ ¼ ln nþ anðx� bnÞ þ
1
2 Anðx� bnÞ

2 þ . . . : ð34Þ

In this expansion,

bn ¼ u�1ðln nÞ; an ¼ u0ðbnÞ; An ¼ u00ðbnÞ: ð35Þ

Therefore,
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PrðP � xÞ ¼ ½FðxÞ�n

¼ 1�
1

n
exp½�anðx� bnÞ �

1
2 Anðx� bnÞ

2�
	 
� �n

;

ð36Þ

which in turn can be approximated as

PrðP � xÞ ¼ G anðx� bnÞ þ
1
2 Anðx� bnÞ

2
� �

; ð37Þ

where G is the well known Gumbel distribution of equation

(7). It follows that the highest E value is Gumbel distributed,

provided that the quadratic term can be neglected. Standard

GFT theory tells us that a Gumbel-distributed variable has

expectation value � and standard deviation �=61=2. From this,

it follows straightforwardly that

�ðPÞ ¼ bn þ
�

an

; �ðPÞ ¼
�

61=2

1

an

ð38Þ

if the quadratic term in the argument of the Gumbel function

can be neglected. A full evaluation of equations (37) and (38)

requires an explicit expression for uðxÞ. This function depends

on the E-value distribution for a ‘typical’ reflection and is

therefore different for acentric and centric reflections.

A1. Acentric reflections

For acentric reflections (Giacovazzo et al., 2002),

FaðxÞ ¼ 1� expð�x2Þ ¼ 1� exp½�uaðxÞ� ð39Þ

immediately implies that

uaðxÞ ¼ x2: ð40Þ

Using the definitions in (35), it follows that

bna
¼ ðln naÞ

1=2 ð41Þ

ana
¼ 2ðln naÞ

1=2
ð42Þ

Ana
¼ 2: ð43Þ

Inserting this into equation (37) yields equations (17) and (18)

depending on whether or not the quadratic term is neglected.

Combining equations (41) and (42) with equation (38) leads to

equations (19) and (20).

A2. Centric reflections

For centric reflections (Giacovazzo et al., 2002),

FcðxÞ ¼ erfðx=21=2Þ ¼ 1� exp½�ucðxÞ�: ð44Þ

To solve for ucðxÞ, it is necessary to expand the error function

for large arguments.

erfðxÞ ¼ 1�
expð�x2Þ

x�1=2
1�

1

2x2
þ . . .

� �
ð45Þ

ucðxÞ ¼
x2

2
þ ln xþ ln

�

2

� �1=2

þ
1

x2
þ . . . : ð46Þ

The calculation of an, bn and An is more complicated in the

centric case than in the acentric case because equation (46)

cannot be inverted straightforwardly. If only the leading term

is taken into account, one obtains u�1
c ðln ncÞ � ð2 ln ncÞ

1=2 as a
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Figure 4
Confidence intervals for the highest E value P for real crystal structures from (a), (b) the CSD (10% of the structures were randomly picked) and (c), (d)
the PDB and for (a), (c) the acentric case and (b), (d) the centric case. The scatter plots were calculated for the resolution range 1.5 � 0.5 Å. Red lines
indicate the expectation values of P according to equations (19) and (23). The orange and yellow regions mark the predicted 90 and 99% confidence
intervals. According to the predictions, there should be 5% low and 5% high outliers that do not fall into the orange 90% confidence interval. The actual
percentage of outliers was quantified for the 1.5 � 0.5 Å shell and subsequently also for thinner shells centered at 1.5 Å resolution. In the diagrams that
show the percentage of outliers versus shell volume, green lines represent low P outliers and black lines represent high P outliers.



first approximation. To improve upon this crude approxima-

tion, one can set u�1
c ðln ncÞ ¼ ð2 ln ncÞ

1=2ð1þ �cÞ and solve for

the small correction �. If only the leading term is retained, the

correction is

�c ¼ �
lnð� ln ncÞ

4 ln nc

: ð47Þ

Therefore,

bnc
� ð2 ln ncÞ

1=2 1�
lnð� ln ncÞ

4 ln nc

� �
ð48Þ

anc
� ð2 ln ncÞ

1=2 1�
lnð� ln ncÞ � 2

4 ln nc

� �
ð49Þ

Anc
� 1: ð50Þ

The combination of equation (37) with equations (48), (49)

and (50) yields equations (21) and (22). The combination of

equations (48) and (49) with equation (38) leads to equations

(23) and (24). Note that, in equation (47) and in the brackets

of equations (48), (49), (21), (22), (23) and (24), terms of the

type ½lnð� ln ncÞ=2 ln nc�
2 have been neglected. For typical nc,

these terms have values comparable to the terms 1=ln nc.

Therefore, inclusion of the latter terms in the expressions for

centric reflections is to some extent conventional.
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